

# Topic Overview

# **Reactions**: Acids and alkalis



## KNOW IT

- I describe how we know a reaction has happened
- To understand <u>labels on chemicals</u>
- To use universal indicators to identify <u>acids and</u> alkalis
- To make an indicator and test its use
- To describe <u>neutralisation</u> and <u>plan variables</u>
- To carry out <u>a valid test and analyse patterns</u>



### LINK IT

This topic builds on the particle model topic that introduced particles and solutions. This topic goes further and you learn about what happens in reactions.



### PROVE IT

- DIRT task writing a method
- End of unit test



## SAY IT

| 3711 11             |                                                                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCABULARY          | DEFINITION                                                                                                                                                              |
| Chemical reaction   | A change in which atoms are rearranged to create new substances.                                                                                                        |
| Solution            | A mixture of a solute dissolved in a solvent. All parts of the mixture are the same.                                                                                    |
| Acid                | An acid is a solution with a pH value less than 7.                                                                                                                      |
| Corrosive           | A substance is corrosive if it can burn your skin or eyes.                                                                                                              |
| Concentrated        | A solution is concentrated if it has a large number of solute particles per unit volume (litre or cubic metre).                                                         |
| Dilute              | A solution is dilute if it has a small number of solute particles per unit volume (litre or cubic metre).                                                               |
| Litmus              | An indicator. Blue litmus paper goes red on adding acid.<br>Red litmus paper goes blue on adding alkali.                                                                |
| Neutral             | A solution that is neither alkaline nor acidic. Its pH is 7.                                                                                                            |
| Neutralisation      | In a neutralisation reaction, an acid cancels out a base or a base cancels out an acid.                                                                                 |
| pH scale            | The pH scale shows whether a substance is acidic, alkaline, or neutral. An acid has a pH below 7. An alkaline solution has a pH above 7. A solution of pH 7 is neutral. |
| Universal indicator | An indicator that changes colour to show the pH of a solution. It is a mixture of dyes.                                                                                 |

#### **Chemical reactions**

- . A chemical reaction is a change in which atoms are rearranged to make new substances
- A reversible reaction is one where the products can react to get back the substances which you started with, most chemical
  reactions are not reversible
- · You can look for signs that a chemical reaction has taken place such as flames, smells, heat change, a loud bang or gentle fizz



#### **Acids and alkalis**

- Acids and alkalis are the chemical opposites of one another
- Both acids and alkalis can be corrosive and irritants

To see whether a substance is an acid or an alkali, we can use an **indicator**. Indicators show how acidic or how alkaline a solution is by showing its position on the **pH scale**, one example of this is **universal indicator** 

- If the solution has a pH value of 1-6 it is acidic
- . If the solution has a pH value of 8-14 it is alkaline
- If the solution has a pH value of 7 it is known as neutral





#### **Acid strength**

- The strength of an acid depends on how much of the acid has broken apart when it has dissolved in water
- Hydrogen chloride dissolves in water to form hydrochloric acid, this is a **strong acid** as all of the particles split up
- . A weak acid will have particles that do not all split up





The appropriate of the

- The concentration of the acid is the amount of acid which has dissolved in 1 litre of water
- The more concentrated the acid, the lower the pH

#### **Neutralisation**

- Neutralisation reactions are any reaction in which acids react with a base to cancel out the effect of the acid
- These reactions form a neutral solution with a pH of seven
- A base is any substance which neutralises an acid
- An alkali is a base which has been dissolved in water



#### Salts

Salts are substances which are formed when an acid reacts with a metal or metal compound Different acids form different types of

 Hydrochloric acids form chloride

salts:

- Sulphuric acids form sulphates
- Nitric acids form nitrates